
Polar cluster formation due to point charge centres in KTaO3:Li

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys.: Condens. Matter 14 4407

(http://iopscience.iop.org/0953-8984/14/17/313)

Download details:

IP Address: 171.66.16.104

The article was downloaded on 18/05/2010 at 06:33

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/14/17
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 14 (2002) 4407–4414 PII: S0953-8984(02)27651-1

Polar cluster formation due to point charge centres in
KTaO3:Li

S A Prosandeev1, V S Vikhnin2 and S E Kapphan3

1 Physics Department, Rostov State University, 5 Zorge St., 344090 Rostov on Don, Russia
2 A F Ioffe Physical-Technical Institute, 194 021, St Petersburg, Russia
3 FB Physik, University of Osnabrück, D-49069 Osnabrück, Germany

Received 6 August 2001, in final form 20 February 2002
Published 18 April 2002
Online at stacks.iop.org/JPhysCM/14/4407

Abstract
Experiments on second-harmonic generation (Eden S, Auf der Horst C and
Kapphan S 1998 J. Korean Phys. Soc. 32 411) have revealed oxidation and
reduction processes to have a great influence on the values of the intensities
obtained. This influence is explained in the present paper by the fact that the
oxidation–reduction treatment changes the concentration of the free charges
connected with oxygen vacancies, and these charges influence the impurity
cluster formation, which causes changes in the second-harmonic intensities. It
is shown that polarized impurity clusters are stabilized by charges placed at
their boundaries because of the compensation of the depolarization field.

1. Introduction

KTaO3:Li is one of the model solid solutions showing impurity dipole ordering effects, which
can be detected either by dielectric spectroscopy or by optical methods [1, 2]. On increasing
the Li concentration, at first, Li clusters appear and then, at a larger Li concentration, a long-
range order is developed. In the present paper we are concerned with dilute KTaO3:Li, in
which the Li clusters are comparatively small. However, their existence was clearly seen by
the second-harmonic generation (SHG) method [3,4] as well as by means of birefringence [5].
Indeed, due to the randomness of the Li-ion distribution, there is a wide distribution of Li–
Li lengths. The Li ions at comparatively short distances are organized into clusters with a
preferred orientation of the Li dipole moments, while the polarization orientation in different
clusters remains random.

Experiments [6] showed a rather strong influence of the oxidation and reduction treatment
on the SHG intensities. It was seen that the oxidation treatment of the samples results in a
decrease of the SHG intensities (figure 1). It is interesting that the influence of the reduction
treatment looks similar to the influence of an external field (see figures 2): both increase the
SHG intensities. Indeed, if one compares the values of the intensities obtained in the field
160 kV m−1 (figure 2) with the data obtained in zero field (figure 1), then it is apparent that the
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Figure 1. The dependence of the SHG intensities in KTaO3:Li with x = 0.008 and nominally pure
KTaO3 on the oxidation treatment. Reduction and oxidation: at 1000 C for 4 h at ambient pressure
(H2 and O2 respectively).
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Figure 2. The dependence of the SHG intensities in KTaO3:Li with x = 0.008 on the oxidation
treatment in the dc field 160 kV m−1.

former are much larger than the latter. In [6] it was assumed that the oxygen vacancies should
play an important role in this effect, but the rather small concentration of these vacancies
produced during an ordinary reduction treatment of the samples was insufficient to allow the
effect to be connected with the scattering of light by the vacancies themselves, at least if
they are distributed uniformly over the bulk. Very probably the electrons trapped by these
vacancies should play an important role, or/and surface effects are important. Besides these
experiments there were others showing a strong influence of the charge carriers on some
properties of KLT, similar solid solutions and even nominally pure perovskites [7–11]. These
findings were supported by studies of the oxide thin-film degradation effect [12–15] and
photocurrent [16–21].
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The present paper considers different models, which are able to explain these experimental
findings in a unified approach. We think that electrons have shallow levels at Li nanocluster
boundaries and that the filling of these levels leads to the enlargement and stabilization of the
Li-correlated clusters due to the joining of smaller ones. The excitation of the electrons from
these levels leads to the breaking of the large (merged) clusters into smaller ones. Thus, our
idea is that just the electrons appearing during the reduction treatment (or disappearing during
the oxidation treatment) are responsible for the stabilization of comparatively large ordered Li
clusters, which influence the SHG intensities.

2. Charge–dipole interaction in the matrix of polarizable ions

In this section we consider a reason for the coupling between a lone Li dipole and an electron
(coupling with a hole was described in [17]). First we study the charge–dipole interaction in
the simple cubic lattice by taking into account the polarization of the surrounding media. The
energy of the charge–dipole interaction can be expressed as the product of the field produced
by the charge on the lattice site in the nth cell, en, and the dipole moment, U = −d · en. It is
convenient to represent the field en as an integral of the Fourier transform over the Brillouin
zone, and then the electric field can be found as the sum of the bare electric field and the field
produced by the polarized lattice sites:

e(k) = e0(k)− φ̂(k)χ̂(k)e0(k) (1)

where e0(k) is the Fourier transform of the unscreened field, which at small k is e0(k) =
q(ik/k2); here q is the value of the charge producing the field and φ̂(k) is the Fourier transform
of the tensor of the dipole–dipole interaction, which in the coordinate system when the z-axis
is directed along the k-vector takes the form

φα,β =
(

−4π

3
γ + c⊥k2

)
δαβ + [4π + (c‖ − c⊥)k2]δα3δβ3. (2)

Here we have introduced a coefficient, γ , showing the difference from the simple cubic lattice;
in the simple cubic lattice this coefficient equals 1. The c‖- and c⊥-coefficients are responsible
for the dispersion of the transverse and longitudinal fluctuations respectively; the directions
denoted by the numbers 1 and 2 are transverse while 3 corresponds to the longitudinal direction.

For the cubic lattice and when the z-axis is directed along the wavevector k the
susceptibility χα,β is described by

χαβ = δα1δβ1 + δα2δβ2

χ−1
0 − 4π

3 γ + c⊥k2
+

δα3δβ3

χ−1
0 + 4π − 4π

3 γ + c‖k2
. (3)

where χ0 is the site polarizability. The substitution of the Fourier transforms into the initial
equation gives

en = q
rn

l3
− q

∑
k

(
4π − 4π

3
γ + c‖k2

)
1

χ−1
0 + 4π − 4π

3 γ + c‖k2

ik

k2
e−ik·rn

= 1

(1 + 4πχ0 − 4π
3 γχ0)

l

l3

[
1 − e−l/rc‖ − l

rc‖
e−l/rc‖

]
(4)

where l ≡ rn, l = |l| and rc‖ =
√
c‖/(χ−1

0 + 4π − 4π
3 γ ) is the longitudinal correlation

radius. One can express the result obtained in terms of the dielectric permittivity, ε =
ε∞ + 4π/(χ−1

0 − 4π
3 γ ):

U = −dq (ε − ε∞)γ + 3

3(ε − ε∞ + 1)

[
r

r3
− r

r3
e−r/rc‖ − r

r2rc
e−r/rc‖

]
. (5)
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Figure 3. Electronic (a) and hole [17] (b) states at a Li dipole in KLT.

The longitudinal correlation radius is
√
ε/ε∞ times lower than the transverse correlation radius

and its value is less than the lattice parameter. This implies that the last two terms are negligible
in comparison with the first one. Moreover, due to the very large value of ε in the ferroelectrics
(ε 
 1), the factor in this expression is simply dqγ /3. Hence the final expression is

U � −γ q d · l

3l3
(6)

(one should divide the result by 4πε0 in the International System where ε0 is the dielectric
constant). Thus we see that the dipole–charge interaction in the highly polarizable dielectrics
is enhanced due to the interaction of the charge with longitudinal phonons. Straightforward
computations of the field produced by a point charge in a lattice consisting of polarizable
ions [22, 23] have shown that, at small distances, the enhancement of the charge–dipole
interaction is even larger than that given by the asymptotic expression derived.

The formula derived allows one to estimate the potential of a microscopic dipole embedded
in a lattice of polarizable ions. For example, for KTaO3:Li we have γ = 0.2, r2 = 3a2/4
where a ≈ 4A, d = 0.6Ae and the estimate of the interaction energy for the Li dipole with an
electron located on the nearest four Ta sites (figure 3) is of 28 meV but the electronic energy
level position is smaller due to the electronic dispersion effect. However, another situation
arises if the electron is situated in the field of an ordered Li cluster controlled by the same
interaction (see the next section).

The interaction of the charges with the Li orientable dipoles showing an r−2-variation
with distance could lead to a large polaron energy, as the integral of this interaction over the
space diverges with the size of the integration. However, for KLT there are different reasons
preventing the formation of such a polaron. Indeed, the Li–Li interaction destroys the polar
region around the electron, as it is stronger than the charge–Li interaction for large enough
Li concentrations (>1%); the thermal fluctuations of the Li dipole moment also destroy the
polaronic state, at least at temperatures larger than the interaction energy of the charge with a
Li dipole. Hence at some distances the interaction energy will show a change with distance
stronger than a r−2-variation. That is, if one takes into account the fact that the average
dipole moment on a Li site is proportional to the field and that the field produced by a charge
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Figure 4. Dipole ordering ((a) → (b)) due to the compensation of the depolarization field by free
carriers.

behaves as r−2, then the interaction energy at such distances will be proportional to r−4.
This implies that the polaronic energy will be proportional to inverse distance between the
polaron and a Li impurity. If the susceptibility behaves as E−1/2, as in the hydrodynamic
model [24], the interaction energy will change with distance as r−3, which leads to a logarithmic
singularity after the integration over the space. The latter effect can provide a large polarization
contribution to the polaronic energy even if the Debye screening effect is included.

3. A nanosize cluster locked by electrons

We consider a nanocluster of volume Vnc locked by ne electrons (figure 4). The free energy in
this case takes the form

F = F0 +
∫

dV [ 1
2αP

2 + 1
3CP

3 + 1
4βP

4

+ AneP
2 + A′npP 2 − B(ne + np)P + 1

2Ku
2
αα −WuααP

2 − EP ]

+
∫

dυ+ [κ(∇P)2 + Dne(∇P)] +
∫

dυ− [κ(∇P)2 + Dnp(∇P)]

+
∫ ∫

dV dυ+ [−HP(∇P) + FP(∇P)2 + G+P
2(∇P)]

+
∫ ∫

dV dυ−[HP(∇P) + FP(∇P)2 + G−P 2(∇P)] + Unenp (7)

where P is the polarization inside the cluster, uαβ is the tensor of displacements, np is the
concentration of positive charges. The first integral describes the energy of the bulk of the
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cluster, the second integral is taken over the region where ∇P is finite (υ+ and υ− respectively
for the regions with the positive and negative gradients of polarization) and, finally, the third
integral describes the interaction between the bulk and surface of the cluster. Let us exclude the
u-tensor by making the substitution uαα = (W/K)P 2. In this case the nonlinearity constant,
β, will be renormalized: −β̃ = β −W 2/2K .

In order to estimate the integrals we will use the approximate behaviour of the polarization
with distance in the surface region of the cluster:

F = F0 + [( 1
2α + Ane + A′np)P 2

0 + 1
3CP

3
0 + 1

4 β̃P
4
0 + 1

6γP
6
0 − B(ne + np)P ]Vnc

+
κ

ξ
P 2

0 S −D(ne + np)P0S + 2

[
HP 2

0 S +
F

2ξ
P 3

0 − (G+ −G−)P 3
0 S

]
Vnc. (8)

Now one can rewrite this expression in the polynomial form

F = F0 + A1P0 + A2P
2
0 + A3P

3
0 + A4P

4
0 + · · · (9)

where

A1 = −[B(ne + np)L + EL + D(ne + np)]S = a11L + a12

A2 =
[(

1

2
α + Ane + A′np

)
L +

k

ξ
P 2

0 + 2HSL

]
S = a21L + a22

A3 =
[

1

3
C +

F

ξ
− (G+ −G−)S

]
LS = a3L

A4 = 1
4 β̃LS = a4L.

(10)

Here we introduced the equality Vnc = LS where L is the linear size of the cluster and S is
the sectional area. The stability condition gives the equation of state

A1 + 2A2P0 + 2A3P
2
0 + 4A4P

3
0 = 0. (11)

We consider the case where A2 > 0, A4 > 0. In this case there are three possible solutions of
this equation, P01, P02 and P03, while only one of these corresponds to the steady state. One of
the solutions (let it beP01) corresponds to the polarization arising in the fieldA1. The two other
solutions correspond to the spontaneous polarization appearing due to symmetry breaking; it
exists even in the absence of the field. We will take it that the nanocluster is stabilized if one of
the solutions corresponding to the appearance of a spontaneous polarization is stabilized (let
it be P02). Hence the condition for the creation of the cluster locked by the free charges is of
the form

F(P01) = F(P02). (12)

This equation can give also the minimal size,Lmin, in terms of the cluster size,L, of the cluster.
With the assumption of smallL-values, when only the terms linear inL are taken into account,
one can obtain that

Lmin � −a2
4a

2
12 + 3a3a4a12a22 − 36a2

3a
2
22

2a2
4a11a12 − 3a3a4(a11a22 + a12a21) + 72a2

3a21a22 − 27
64a

2
3a

2
22

. (13)

If F(P01) < F(P02), then the clusters do not appear, while in the reverse case, they can appear
and grow. The result also depends on the number of the free charges available. In the case
where these free charges are plentiful, they can be used in order to produce the internal field
in the cluster compensating the depolarization field. However, if the charges are few, then the
clusters do not appear.
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In the case where the number of the electrons is sufficient to compensate the depolarization
field completely, one can use the following approximate relations facilitating the approach to
the problem:

ne = − 1

4π
(∇P)υ+ , np = 1

4π
(∇P)υ− (14)

together with the stability condition. Here the former gradient is taken in the region of υ+

where the polarization gradient is positive, and the latter is taken in the region of υ− where
the gradient is negative. This implies that the positive charges arising due to the change of the
polarization at the cluster surface are fully compensated by the electrons and that the negative
charges on the other side of the cluster are fully compensated by positively charged oxygen
vacancies or/and holes.

It is important to state that the clusters appear mainly at those points in the crystal where
the local density of the Li ions is higher than the average one. It is obvious that the correlation
of the Li dipoles inside such clusters is larger than the average correlation. Hence a local
phase transition could happen in the cluster before the phase transition in the whole crystal.
However, such local instability is prevented by the depolarization field, while this field can be
compensated by the free charges, which can be collected at boundaries of the cluster.

4. Discussion

In the present paper we have shown that, in a lattice consisting of polarizable sites, the dipole–
charge interaction is enlarged due to local field effects. This enlargement resembles the well-
known enhancement of the dipole–dipole interaction, due to the indirect interaction, over that
of the transverse optical phonons [2, 25, 26]. However, in the present case the longitudinal
optical phonons are the most important, since the charges do not interact with the transverse
phonons.

Another finding in the present paper is the stabilization of nanoclusters by free charges
like electrons, which can be caught by a cluster—on the one hand—and which will produce a
stabilizing field for this cluster, compensating the depolarization field partly or completely—
on the other hand. Thus both the cluster and free charges will be self-trapped. This model
corresponds to experimental data [6], in which a strong dependence of the SHG intensity on the
oxidation–reduction treatment of KLT was found (see also figure 1). Indeed the SHG intensities
reflect 〈P 2〉, which is proportional to the average number of Li impurities in Li clusters (the
so-called cluster size) [4]. Hence the increase of the cluster size due to the increase of the
number of free charges (figure 1) or due electric field influence (figure 2) results in a linear
increase of the SHG intensities.

Another experimental finding [19] showed that the illumination of the samples in a field
decreases the SHG intensities, which can be explained now as the excitation of the electrons
from the locked domains that breaks up these domains, but the illumination should be done in
a field in order to take electrons away.

Thus the experiments on the SHG performed in [6] can be explained if one takes into
account that the oxidation–reduction treatment of KTaO3:Li changes the concentration of
oxygen vacancies. These point defects are known to have shallow trap levels when two
electrons occupy the vacancy. Hence the electrons can be easily released from the vacancies
and they can occupy in other trap levels in the bulk or surface. In particular, these electrons can
occupy energy levels existing at the boundaries of polarized impurity domains, which results
in their stabilization. The reduction treatment increases the number of free electrons and,
hence, there are more possibilities for organizing the polarized impurity clusters or enlarging
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the existing clusters. This increases the SHG intensities in agreement with experiment. The
reverse is true when the sample is oxidized: the clusters are broken into smaller ones due
to the lack of electrons in this case. This decreases the SHG intensities, also in agreement
with experiment. Thus one can govern the average impurity-polarized cluster size by using an
oxidation–reduction treatment of the samples.
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[1] Höchli U T, Knorr K and Loidl A 1990 Adv. Phys. 39 405
[2] Vugmeister B E and Glinchuk M D 1990 Rev. Mod. Phys. 62 993
[3] Voigt P and Kapphan S 1994 J. Phys. Chem. 55 853
[4] Prosandeev S A, Vikhnin V S and Kapphan S 2000 Eur. Phys. J. B 15 469
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